РАЗДЕЛЫ


ГЛАВНАЯ

СТАТЬИ

СКАЧАТЬ

О DARK BASIC

ПОЛЕЗНЫЕ ССЫЛКИ

CODE DEMOS


Посетители


Сделать стартовой

Добавить в избранное


ПРИМЕЧАНИЕ!
Сайт рекомендуется просматривать в браузере Opera.














Оновы трехмерной графики.
  3. Матричные преобразования.




Вообще говоря, лучше всего немного почитать любую книжку по линейной алгебре. Здесь будет только краткий рассказ о 3D преобразованиях, о том, как их делать с помощью матриц, и о том, что же такое матрицы и как с ними работать.

Введем несколько терминов. n-мерный вектор, он же вектор размерности n, он же вектор размера n: упорядоченный набор n действительных чисел. Вообще говоря, практически то же самое, что и обычный 1D-массив. Матрица размера m на n (будет обозначаться как m*n, mxn): таблица размера m на n, в каждой клетке которой - действительное число. Это уже 2D-массив. Всего лишь. Вот пример матрицы 3x3:

[ 15  y*z   0.6 ]
[ 7   -3   91 ]
[ sin(x)  0.123   exp(t) ]

Займемся определением операций над векторами и матрицами. Вектор будем записывать в столбик и рассматривать его как матрицу размера n*1.

Операция скалярного произведения векторов: определена для двух векторов одинаковых размеров. Результат есть число, равное сумме произведений соответствующих элементов векторов. Пример:
[ 1 ]   [ 4 ]
[ 2 ] * [ 5 ] = 1*4 + 2*5 + 3*6 = 32
[ 3 ]   [ 6 ]

Операция векторного произведения: определена для (n-1) вектора одинакового размера n. Результат - вектор, причем, что интересно, перпендикулярный всем множителям. Результат меняется от перестановки мест множителей!!! Формально определяется как определитель матрицы, первая строка которой есть все базисные вектора, а все последующие - соответствующие координаты всех множителей. Поскольку нам она будет требоваться только для 3D пространства, мы определим векторное произведение двух 3D векторов явно:

             [ Ax ]    [ Bx ]     |   i     j   k   |    [ Ay*Bz-Az*By ]
  AxB = [ Ay ] x [ By ] = | Ax Ay Az | = [ Az*Bx-Ax*Bz ]
             [ Az ]    [ Bz ]     | Bx  By  Bz |    [ Ax*By-Ay*Bx ]


Операция сложения двух матриц: определена для матриц одинаковых размеров. Каждый элемент суммы (то есть, каждое число в таблице) равняется сумме соответствующих элементов слагаемых-матриц. Пример:

[ 1   x   500 ]     [ 8   a  3 ]    [ 9   a+x   503 ]
[ 2   y   600 ] + [ 9   b  2 ] = [ 11   b+y   602 ]
[ 3   z   700 ]    [ 10   c   1 ]   [ 13  c+z   701 ]

Операция умножения матрицы на число: определена для любой матрицы и любого числа; каждый элемент результата равняется произведению соответствующего элемента матрицы-множителя и числа-множителя.

Операция умножения двух матриц: определена для двух матриц таких размеров a*b и c*d, что b = c. Например, если b = c, но a != d, то при перестановке множителей операция будет вообще не определена. Результатом умножения матрицы A размером a*b на матрицу B размером b*d будет матрица C размером a*d, в которой элемент, стоящий в строке i и столбце j, равен произведению строки i матрицы A на столбец j матрицы B. Произведение строки на столбец определяется как сумма произведений соответствующих элементов строки и столбца. Чтобы было хоть чуть-чуть понятно, пример умножения строки на столбец (они должны быть равной длины, кстати; поэтому и такие ограничения на размеры матриц):

                   [ 4 ]
[ 1  2  3 ] * [ 5 ] = 1*4 + 2*5 + 3*6 = 32
                   [ 6 ]


А чтобы перемножить две матрицы, надо эту операцию проделать для каждого элемента. Вот пример:

[ 1  2  3 ]    [ 0  3 ]     [ 1*0+2*1+3*2 1*3+2*4+3*5 ]
[ 4  5  6 ] * [ 1  4 ] = [ 4*0+5*1+6*2 4*3+5*4+6*5 ] = ...
[ 7  8  9 ]    [ 2  5 ]     [ 7*0+8*1+9*2 7*3+8*4+9*5 ]


Умножение и сложение матриц обладают почти тем же набором свойств, что и обычные числа, хотя некоторые привычные свойства не выполняются (например, A*B != B*A); нам на самом деле понадобится знать, что произведение вида A*B*C*D*... не зависит от того, как расставить скобки. Или, если угодно, что

A*(B*C) = (A*B)*C.

Теперь забудем об этом на некоторое время и перейдем к преобразованиям. Любое движение (то есть преобразование пространства, сохраняющее расстояние между точками) в трехмерном пространстве, согласно теореме Шаля, может быть представлено в виде суперпозиции поворота и параллельного переноса, то есть последовательного выполнения поворота и параллельного переноса. Именно поэтому основная часть информация о поведении объекта - это его смещение, ось поворота и угол поворота. И именно поэтому нам достаточно знать, как сделать два преобразования - перенос и поворот.

Перенос точки (кстати, точки будут также рассматриваться как вектора с началом в начале координат и концом в собственно точке) с координатами (x,y,z) на вектор (dx,dy,dz) делается простым сложением всех координат. То есть результат - это (x+dx,y+dy,z+dz). Как бы сложили вектор-точку и вектор-перенос.

Поворот - занятие уже более интересное. Но тоже простое. Рассмотрим для примера поворот точки (x,y,z) относительно оси z. В этом случае z не меняется вообще, а (x,y) меняются так же, как и при 2D повороте относительно начала координат.

Посмотрим, какие будут координаты у точки A' - результата поворота A(x,y) на угол alpha.

Пусть r = sqrt(x*x+y*y). Пусть угол AOx равен phi, тогда из рисунка видно, что cos(phi) = x/r, sin(phi) = y/r. Угол A'OA равен по условию alpha. Отсюда

x' = r*cos(alpha+phi) = r*(cos(alpha)*cos(phi)-sin(alpha)*sin(phi)) =
= (r*cos(phi))*cos(alpha)-(r*sin(phi))*sin(alpha) =
= x*cos(alpha)-y*sin(alpha)

y' = r*sin(alpha+phi) = r*(cos(alpha)*sin(phi)+sin(alpha)*cos(phi)) =
= (r*cos(phi))*sin(alpha)+(r*sin(phi))*cos(alpha) =
= x*sin(alpha)+y*cos(alpha)

Для трехмерного случая, таким образом

x' = x*cos(alpha)-y*sin(alpha)
y' = x*sin(alpha)+y*cos(alpha)
z' = z

Аналогичные формулы получатся и для других осей поворота (то есть Ox, Oy). Поворот относительно произвольной оси, проходящей через начало координат, можно сделать с помощью этих поворотов - сделать поворот относительно Ox так, чтобы ось поворота стала перпендикулярна Oy, затем поворот относительно Oy так, чтобы ось поворота совпала с Oz, сделать собственно поворот, а затем обратные повороты относительно Oy и Ox. Можно даже вывести формулы для такого поворота и убедиться в том, что они очень громоздкие.

Вспомним о матрицах и векторах и внимательно посмотрим на выведенные формулы для поворота. Можно заметить, что
[ x' ] = [ cos(alpha)  -sin(alpha)   0 ]  [ x ]
[ y' ] = [ sin(alpha)   cos(alpha)   0 ]  [ y ]
[ z' ] = [       0               0               1 ]  [ z ]


То есть поворот на угол alpha задается одной и той же матрицей, и с помощью этой матрицы (умножая ее на вектор-точку) можно получить координаты повернутой точки. Пока никакого выигрыша не видно - здесь умножение матрицы на вектор требует больше операций, чем расчет x' и y' по формулам.

Удобство матриц для нас заключается как раз в свойстве A*(B*C) = (A*B)*C.
Пусть мы делаем несколько поворотов подряд, например, пять (как раз столько, сколько надо для поворота относительно произвольной оси), и пусть они задаюся матрицами A, B, C, D, E (A - матрица самого первого поворота, E - последнего). Тогда для вектора p мы получаем

p' = E*(D*(C*(B*(A*p)))) = E*D*C*B*A*p = (E*D*C*B*A)*p = (E*(D*(C*(B*A))))*p = T*p,

где

T = (E*(D*(C*(B*A))))

матрица преобразования, являющегося комбинацией пяти поворотов. Посчитав один раз эту матрицу, можно в дальнейшем без проблем применить довольно сложное преобразование из пяти поворотов к любому вектору с помощью всего одного умножения матрицы на вектор.

Таким образом, можно задать любой поворот матрицей, и любая комбинация поворотов также будет задаваться матрицей, которую можно довольно легко посчитать. Но есть еще параллельный перенос, есть еще масштабирование. Что делать с ними?

На самом деле, эти преобразования тоже легко записываются в виде матриц. Только вместо матриц 3x3 и 3-мерных векторов используются так называемые однородные 4-мерные координаты и матрицы 4x4. При этом вместо векторов вида
[ x ]
[ y ]
[ z ]

используются вектора вида
[ x ]
[ y ]
[ z ]
[ 1 ]

а вместо произвольных матриц 3x3 используются матрицы 4x4 такого вида:

[ a b c d ]
[ e f g h ]
[ i j k l ]
[ 0 0 0 1 ]

Видно, что если d = h = l = 0, то в результате применения всех операций получается то же самое, что и для матриц 3x3.

Матрица параллельного переноса теперь определяется как
[ 1 0 0 dx ]
[ 0 1 0 dy ]
[ 0 0 1 dz ]
[ 0 0 0 1 ]

Матрицу масштабирования можно определить и для матриц 3x3, и для матриц 4x4:

[ kx   0    0 ]        [ kx   0   0   0 ]
[ 0   ky    0 ] или [ 0   ky   0   0 ]
[ 0    0   kz ]        [ 0   0   kz   0 ]
                            [ 0   0   0   1 ]

где kx, ky, kz - коэффициенты масштабирования по соответствующим осям.

Таким образом, получаем следующее. Любое нужное нам преобразование пространства можно задать матрицей 4x4 определенной структуры, разной для разных преобразований. Результат последовательного выполнений нескольких преобразований совпадает с результатом одного преобразования T, которое также задается матрицей 4x4, вычисляемой как произведение матриц всех этих преобразований. Важен порядок умножения, так как A*B != B*A. Результат применения преобразования T к вектору [ x y z ] считается как результат умножения матрицы T на вектор [ x y z 1 ]. Вот и все.

Осталось только на примере показать, почему A*B != B*A. Пусть A - матрица переноса, B - поворота. Если мы сначала перенесем объект, а потом повернем относительно центра координат (это будет B*A), получим далеко не то, что будет, если сначала объект повернуть, а потом перенести (это уже A*B).


(Автором данной статьи является Андрей Аксенов. Адрес в FIDO: 2:5036/5.47)

Hosted by uCoz